1. Unrestricted Kohn-Sham 一阶梯度与中间矩阵

这一节我们相对系统地讨论一阶 GGA 梯度的相关性质,包括能量表达式、一阶梯度、U 矩阵的计算与关联;从而对后续的 UKS 的计算打下基础。

1.1. 准备工作

[1]:
%load_ext autoreload
%autoreload 2
%matplotlib notebook

from matplotlib import pyplot as plt
import numpy as np
from pyscf import gto, scf, dft, grad
from pyscf.scf import ucphf
from functools import partial
from pyxdh.DerivOnce import GradUSCF, GradSCF
from pyxdh.Utilities import GridHelper, KernelHelper
from pyxdh.Utilities import NucCoordDerivGenerator, NumericDiff
import warnings

np.einsum = partial(np.einsum, optimize=["greedy", 1024 ** 3 * 2 / 8])
np.allclose = partial(np.allclose, atol=1e-6, rtol=1e-4)
np.set_printoptions(5, linewidth=180, suppress=True)
warnings.filterwarnings("ignore")

为了简化计算量,我们大多数时候对格点积分不作非常精细的计算,因此使用非常小的格点 (50, 194)。使用的分子是非对称的 CH3 自由基。

[2]:
mol = gto.Mole()
mol.atom = """
C  0. 0. 0.
H  1. 0. 0.
H  0. 2. 0.
H  0. 0. 1.5
"""
mol.basis = "6-31G"
mol.spin = 1
mol.verbose = 0
mol.build()
# mol = gto.Mole()
# mol.atom = """
# N  0. 0. 0.
# H  1. 0. 0.
# H  0. 2. 0.
# H  0. 0. 1.5
# """
# mol.basis = "6-31G"
# mol.spin = 0
# mol.verbose = 0
# mol.build()
[2]:
<pyscf.gto.mole.Mole at 0x7fbfa1f4fcd0>
[3]:
grids = dft.Grids(mol)
grids.atom_grid = (50, 194)
grids.build()
[3]:
<pyscf.dft.gen_grid.Grids at 0x7fbfa1f4f7f0>
[4]:
scf_eng = dft.UKS(mol)
scf_eng.xc = "B3LYPg"
scf_eng.grids = grids
scf_eng.run()
scf_eng.e_tot
[4]:
-39.60377211830869
[5]:
gradh = GradUSCF({"scf_eng": scf_eng, "cphf_tol": 1e-10})
gradh.eng
[5]:
-39.60377211830869

我们顺便定义一下数值导数计算量 gradn。可以用它来进行若干矩阵的数值导数计算。

[6]:
def mol_to_grad_helper(mol):
    g = dft.Grids(mol)
    g.atom_grid = (50, 194)
    g.build()
    mf = dft.UKS(mol)
    mf.xc = "B3LYPg"
    mf.grids = g
    return GradUSCF({"scf_eng": mf.run()})

gradn = NucCoordDerivGenerator(mol, mol_to_grad_helper)
[7]:
def plot_diff(anal_mat, num_mat):
    fig, ax = plt.subplots(figsize=(2.4, 1.8)); ax.set_xscale("log")
    ax.hist(abs(anal_mat.ravel() - num_mat.ravel()), bins=np.logspace(np.log10(1e-10), np.log10(1e-1), 50), alpha=0.5)
    ax.hist(abs(num_mat.ravel()), bins=np.logspace(np.log10(1e-10), np.log10(1e-1), 50), alpha=0.5)
    return fig.tight_layout()

1.2. 能量 UKS 计算与相关矩阵

1.2.1. 新的基础数据结构

由于 Unrestricted 计算会在同一分子中涉及到两套占据轨道信息,因此会产生 RKS 所不会出现的各种不便利,并且要求一种新的数据结构。我们会作简单的说明。

  • 对于 GGA 而言,cx \(c_\mathrm{x}\)xc 泛函名称与 RKS 情形相同

[8]:
cx, xc = gradh.cx, gradh.xc
cx, xc
[8]:
(0.2, 'B3LYPg')
  • nmo \(n_\mathrm{MO}\)nao \(n_\mathrm{AO}\)natm \(n_\mathrm{Atom}\) 与 RKS 的情形相同

[9]:
nmo, nao, natm = gradh.nmo, gradh.nao, gradh.natm
nmo, nao, natm
[9]:
(15, 15, 4)
  • nocc \((n_\mathrm{occ}^\alpha, n_\mathrm{occ}^\beta)\), nvir \((n_\mathrm{vir}^\alpha, n_\mathrm{vir}^\beta)\) 则是 Tuple[int] 类型

[10]:
nocc, nvir = gradh.nocc, gradh.nvir
nocc, nvir
[10]:
((5, 4), (10, 11))
  • so, sv, sa 作为占据、非占、全轨道的分割,其类型也变为了 Tuple[slice] 类型

[11]:
so, sv, sa = gradh.so, gradh.sv, gradh.sa
so, sv, sa
[11]:
((slice(0, 5, None), slice(0, 4, None)),
 (slice(5, 15, None), slice(4, 15, None)),
 (slice(0, 15, None), slice(0, 15, None)))
  • C \(C_{\mu p}^\sigma\), e \(e_p^\sigma\) 分别是轨道系数与轨道能,维度分别是 \((\sigma, \mu, p)\)\((\sigma, p)\)

  • 一般来说,\(\sigma\) 在 np.einsum 程序中会用 x, y 等表示

  • \(\sigma\) 在以后的程序中,通常置于维度的第一位置,比被求导量 \(\mathbb{A}\) 优先

  • 由于 C[0] \(C_{\mu p}^\alpha\)C[1] \(C_{\mu p}^\beta\) 维度相同,因此 C 使用 np.ndarray 储存;e 同理

[12]:
C, e = gradh.C, gradh.e
C.shape, e.shape
[12]:
((2, 15, 15), (2, 15))
  • Co \(C_{\mu i}^\sigma\) 为占据轨道系数,维度是 \((\sigma, \mu, i)\)

  • 但是留意,由于 \(\alpha\)\(\beta\) 自旋的占据轨道数不同,因此使用 Tuple[np.ndarray] 储存;以后的矩阵通常也按照这两种方式分别处理

[13]:
Co = gradh.Co
Co[0].shape, Co[1].shape
[13]:
((15, 5), (15, 4))
  • eo \(e_i^\sigma\) 为占据轨道能,维度 \((\sigma, i)\),类型同理 Tuple[np.ndarray]

[14]:
eo = gradh.eo
eo[0].shape, eo[1].shape
[14]:
((5,), (4,))

上述的情况也可以用于定义非占轨道系数与非占轨道能:

[15]:
Cv, ev = gradh.Cv, gradh.ev
  • mo_occ \(\delta_{p \in \mathrm{occ}}^\sigma\) 表示轨道占据情况

[16]:
mo_occ = gradh.mo_occ
mo_occ
[16]:
array([[1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

1.2.2. 电子积分

  • H_0_ao \(h_{\mu \nu}\), S_0_ao \(S_{\mu \nu}\), eri0_ao \((\mu \nu | \kappa \lambda)\), H_1_ao \(h_{\mu \nu}^\mathbb{A}\), S_1_ao \(S_{\mu \nu}^\mathbb{A}\), eri1_ao \((\mu \nu | \kappa \lambda)^\mathbb{A}\) 与 RKS 没有区别

[17]:
H_0_ao, S_0_ao, eri0_ao, H_1_ao, S_1_ao, eri1_ao = gradh.H_0_ao, gradh.S_0_ao, gradh.eri0_ao, gradh.H_1_ao, gradh.S_1_ao, gradh.eri1_ao
  • H_0_mo \(h_{pq}^\sigma\), S_0_mo \(S_{pq}^\sigma\), dim: \((\sigma, p, q)\), type: np.ndarray

  • H_1_mo \(h_{pq}^{\mathbb{A}, \sigma}\), S_1_mo \(S_{\mu \nu}^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, p, q)\), type: np.ndarray

[18]:
H_0_mo, S_0_mo = gradh.H_0_mo, gradh.S_0_mo
H_0_mo.shape, S_0_mo.shape
[18]:
((2, 15, 15), (2, 15, 15))
[19]:
H_1_mo, S_1_mo = gradh.H_1_mo, gradh.S_1_mo
H_1_mo.shape, S_1_mo.shape
[19]:
((2, 12, 15, 15), (2, 12, 15, 15))

H_1_mo \(h_{pq}^{\mathbb{A}, \sigma}\) 为例,

\[h_{pq}^{\mathbb{A}, \sigma} = h_{\mu \nu}^\mathbb{A} C_{\mu p}^\sigma C_{\nu q}^\sigma\]
[20]:
np.allclose(np.einsum("Auv, xup, xvq -> xApq", H_1_ao, C, C), H_1_mo)
[20]:
True
  • eri0_mo \((pq|rs)^{\sigma \sigma'}\), dim: \((\sigma \sigma', p, q, r, s)\), type: np.ndarray

  • 上述的 \(\sigma \sigma'\) 所实际指代的是 \(\alpha \alpha, \alpha \beta, \beta \beta\)\((pq|rs)^{\sigma \sigma'}\) 中,\(p, q\)\(\sigma\) 自旋的,而 \(r, s\)\(\sigma'\) 自旋的

\[(pq|rs)^{\sigma \sigma'} = (\mu \nu | \kappa \lambda) C_{\mu p}^\sigma C_{\nu q}^\sigma C_{\kappa r}^{\sigma'} C_{\lambda s}^{\sigma'}\]
[21]:
eri0_mo = gradh.eri0_mo
eri0_mo.shape
[21]:
(3, 15, 15, 15, 15)
[22]:
np.allclose(
    np.array([
        np.einsum("uvkl, up, vq, kr, ls -> pqrs", eri0_ao, C[0], C[0], C[0], C[0]),
        np.einsum("uvkl, up, vq, kr, ls -> pqrs", eri0_ao, C[0], C[0], C[1], C[1]),
        np.einsum("uvkl, up, vq, kr, ls -> pqrs", eri0_ao, C[1], C[1], C[1], C[1]),
    ]),
    eri0_mo
)
[22]:
True
  • eri1_mo \((pq|rs)^{\mathbb{A}, \sigma \sigma'}\), dim: \((\sigma \sigma', \mathbb{A}, p, q, r, s)\), type: np.ndarray,与 eri0_mo \((pq|rs)^{\sigma \sigma'}\) 同理

[23]:
eri1_mo = gradh.eri1_mo
eri1_mo.shape
[23]:
(3, 12, 15, 15, 15, 15)

1.2.3. 密度矩阵 \(D_{\mu \nu}^\sigma\)

  • D \(D_{\mu \nu}^\sigma\), dim: \((\sigma, \mu, \nu)\), type: np.ndarray

\[D_{\mu \nu}^\sigma = C_{\mu p}^\sigma C_{\nu p}^\sigma \delta_{p \in \mathrm{occ}}^\sigma\]
[24]:
D = gradh.D
D.shape
[24]:
(2, 15, 15)
[25]:
np.allclose(np.einsum("xup, xvp, xp -> xuv", C, C, mo_occ), D)
[25]:
True

另一种验证方式是

\[D_{\mu \nu}^\sigma = C_{\mu i}^\sigma C_{\nu i}^\sigma\]

但需要留意到,两种自旋的占据轨道数量并不相同;因此,不能像上面一行代码即可验证。

[26]:
(
    np.allclose(np.einsum("ui, vi -> uv", Co[0], Co[0]), D[0]),
    np.allclose(np.einsum("ui, vi -> uv", Co[1], Co[1]), D[1])
)
[26]:
(True, True)

1.2.4. 库伦积分 \(J_{\mu \nu}\) 与交换积分 \(K_{\mu \nu}\)

该积分尽管常用,但以后不经常用该记号。通常以后会显式地写出如何从原子轨道与密度作张量缩并。

该积分的定义与 RKS 相同。如果我们定义影响库伦积分的密度矩阵为 \(X_{\kappa \lambda}\),那么

  • \(J_{\mu \nu} = (\mu \nu | \kappa \lambda) X_{\kappa \lambda}\)

  • \(K_{\mu \nu} = (\mu \kappa | \nu \lambda) X_{\kappa \lambda}\)

[27]:
X = np.random.randn(nao, nao)
[28]:
np.allclose(np.einsum("uvkl, kl -> uv", eri0_ao, X), scf_eng.get_j(dm=X))
[28]:
True
[29]:
np.allclose(np.einsum("ukvl, kl -> uv", eri0_ao, X), scf_eng.get_k(dm=X, hermi=0))
[29]:
True

1.2.5. 轨道与密度格点、泛函核格点

  • 轨道与密度格点仍然用 grdh 记号表示,但在文档中,会使用 Tuple[GridHelper] 类型储存,长度为 2。两个 GridHelper 类型分别代表 \(\alpha, \beta\) 密度下的轨道与密度格点。在 pyxdh 程序中,使用 zip[GridIterator]

[30]:
grdh = (GridHelper(mol, grids, D[0]), GridHelper(mol, grids, D[1]))
[31]:
ngrid = grdh[0].ngrid
ngrid
[31]:
26836
  • 泛函核格点仍然用 kerh 记号表示

[32]:
kerh = KernelHelper(grdh, xc, deriv=3)

但由于使用了带自旋密度,因此许多量与 RKS 稍有不同。简单的情况中,在 RKS 中为向量的 \(f_\rho\) 在这里变成两条向量 \((f_{\rho^\alpha}, f_{\rho^\beta})\)

[33]:
kerh.fr
[33]:
array([[-0.     , -0.     , -0.     , ..., -0.01168, -0.01275, -0.01399],
       [-0.     , -0.     , -0.     , ..., -0.01172, -0.01275, -0.014  ]])

\(f_{\gamma}\) 则分为了 \((f_{\gamma^{\alpha \alpha}}, f_{\gamma^{\alpha \beta}}, f_{\gamma^{\beta \beta}})\)

[34]:
kerh.fg
[34]:
array([[-0.     , -0.     , -0.     , ..., -0.36551, -0.46675, -0.43452],
       [ 0.     ,  0.     ,  0.     , ...,  0.21322,  0.34198,  0.32137],
       [-0.     , -0.     , -0.     , ..., -0.36812, -0.43788, -0.4247 ]])

我们下面系统地整理一下 PySCF 中对泛函核导数的 说明:

  • exc \(f\) 与 RKS 较为接近

[35]:
kerh.exc.shape
[35]:
(26836,)
  • fr 2: u, d

    • \(f_{\rho^\alpha}, f_{\rho^\beta}\)

  • fg 3: uu, ud, dd

    • \(f_{\gamma^{\alpha \alpha}}, f_{\gamma^{\alpha \beta}}, f_{\gamma^{\beta \beta}}\)

[36]:
kerh.fr.shape[0], kerh.fg.shape[0]
[36]:
(2, 3)
  • frr 3: u_u, u_d, d_d

    • \(f_{\rho^\alpha \rho^\alpha}, f_{\rho^\alpha \rho^\beta}, f_{\rho^\beta \rho^\beta}\)

  • frg 6: u_uu, u_ud, u_dd, d_uu, d_ud, d_dd

    • \(f_{\rho^\alpha \gamma^{\alpha \alpha}}, f_{\rho^\alpha \gamma^{\alpha \beta}}, f_{\rho^\alpha \gamma^{\beta \beta}}, f_{\rho^\beta \gamma^{\alpha \alpha}}, f_{\rho^\beta \gamma^{\alpha \beta}}, f_{\rho^\beta \gamma^{\beta \beta}}\)

  • fgg 6: uu_uu, uu_ud, uu_dd, ud_ud, ud_dd, dd_dd

    • \(f_{\gamma^{\alpha \alpha} \gamma^{\alpha \alpha}}, f_{\gamma^{\alpha \alpha} \gamma^{\alpha \beta}}, f_{\gamma^{\alpha \alpha} \gamma^{\beta \beta}}, f_{\gamma^{\alpha \beta} \gamma^{\alpha \beta}}, f_{\gamma^{\alpha \beta} \gamma^{\beta \beta}}, f_{\gamma^{\beta \beta} \gamma^{\beta \beta}}\)

[37]:
kerh.frr.shape[0], kerh.frg.shape[0], kerh.fgg.shape[0]
[37]:
(3, 6, 6)
  • frrr 4: u_u_u, u_u_d, u_d_d, d_d_d

    • \(f_{\rho^\alpha \rho^\alpha \rho^\alpha}, f_{\rho^\alpha \rho^\alpha \rho^\beta}, f_{\rho^\alpha \rho^\beta \rho^\beta}, f_{\rho^\beta \rho^\beta \rho^\beta}\)

  • frrg 9: u_u_uu, u_u_ud, u_u_dd, u_d_uu, u_d_ud, u_d_dd, d_d_uu, d_d_ud, d_d_dd

    • \(f_{\rho^\alpha \rho^\alpha \gamma^{\alpha \alpha}}, f_{\rho^\alpha \rho^\alpha \gamma^{\alpha \beta}}, f_{\rho^\alpha \rho^\alpha \gamma^{\beta \beta}}, f_{\rho^\alpha \rho^\beta \gamma^{\alpha \alpha}}, f_{\rho^\alpha \rho^\beta \gamma^{\alpha \beta}}, f_{\rho^\alpha \rho^\beta \gamma^{\beta \beta}}, f_{\rho^\beta \rho^\beta \gamma^{\alpha \alpha}}, f_{\rho^\beta \rho^\beta \gamma^{\alpha \beta}}, f_{\rho^\beta \rho^\beta \gamma^{\beta \beta}}\)

  • frgg 12: u_uu_uu, u_uu_ud, u_uu_dd, u_ud_ud, u_ud_dd, u_dd_dd, d_uu_uu, d_uu_ud, d_uu_dd, d_ud_ud, d_ud_dd, d_dd_dd

    • \(f_{\rho^\alpha \gamma^{\alpha \alpha} \gamma^{\alpha \alpha}}, f_{\rho^\alpha \gamma^{\alpha \alpha} \gamma^{\alpha \beta}}, f_{\rho^\alpha \gamma^{\alpha \alpha} \gamma^{\beta \beta}}, f_{\rho^\alpha \gamma^{\alpha \beta} \gamma^{\alpha \beta}}, f_{\rho^\alpha \gamma^{\alpha \beta} \gamma^{\beta \beta}}, f_{\rho^\alpha \gamma^{\beta \beta} \gamma^{\beta \beta}}, f_{\rho^\beta \gamma^{\alpha \alpha} \gamma^{\alpha \alpha}}, f_{\rho^\beta \gamma^{\alpha \alpha} \gamma^{\alpha \beta}}, f_{\rho^\beta \gamma^{\alpha \alpha} \gamma^{\beta \beta}}, f_{\rho^\beta \gamma^{\alpha \beta} \gamma^{\alpha \beta}}, f_{\rho^\beta \gamma^{\alpha \beta} \gamma^{\beta \beta}}, f_{\rho^\beta \gamma^{\beta \beta} \gamma^{\beta \beta}}\)

  • fggg 10: uu_uu_uu, uu_uu_ud, uu_uu_dd, uu_ud_ud, uu_ud_dd, uu_dd_dd, ud_ud_ud, ud_ud_dd, ud_dd_dd, dd_dd_dd

    • \(f_{\gamma^{\alpha \alpha} \gamma^{\alpha \alpha} \gamma^{\alpha \alpha}}, f_{\gamma^{\alpha \alpha} \gamma^{\alpha \alpha} \gamma^{\alpha \beta}}, f_{\gamma^{\alpha \alpha} \gamma^{\alpha \alpha} \gamma^{\beta \beta}}, f_{\gamma^{\alpha \alpha} \gamma^{\alpha \beta} \gamma^{\alpha \beta}}, f_{\gamma^{\alpha \alpha} \gamma^{\alpha \beta} \gamma^{\beta \beta}}, f_{\gamma^{\alpha \alpha} \gamma^{\beta \beta} \gamma^{\beta \beta}}, f_{\gamma^{\alpha \beta} \gamma^{\alpha \beta} \gamma^{\alpha \beta}}, f_{\gamma^{\alpha \beta} \gamma^{\alpha \beta} \gamma^{\beta \beta}}, f_{\gamma^{\alpha \beta} \gamma^{\beta \beta} \gamma^{\beta \beta}}, f_{\gamma^{\beta \beta} \gamma^{\beta \beta} \gamma^{\beta \beta}}\)

[38]:
kerh.frrr.shape[0], kerh.frrg.shape[0], kerh.frgg.shape[0], kerh.fggg.shape[0]
[38]:
(4, 9, 12, 10)

1.2.6. 能量计算

\[E_\mathrm{elec} = h_{\mu \nu} D_{\mu \nu}^\sigma + \frac{1}{2} (\mu \nu | \kappa \lambda) D_{\mu \nu}^\sigma D_{\kappa \lambda}^{\sigma'} - \frac{c_\mathrm{x}}{2} (\mu \kappa | \nu \lambda) D_{\mu \nu}^\sigma D_{\kappa \lambda}^\sigma + f \rho^\sigma\]
[39]:
(
    + np.einsum("uv, xuv -> ", H_0_ao, D)
    + 0.5 * np.einsum("uvkl, xuv, ykl -> ", eri0_ao, D, D)
    - 0.5 * cx * np.einsum("ukvl, xuv, xkl -> ", eri0_ao, D, D)
    + np.einsum("g, g -> ", kerh.exc, grdh[0].rho_0)
    + np.einsum("g, g -> ", kerh.exc, grdh[1].rho_0)
)
[39]:
-47.22493668809642
[40]:
scf_eng.energy_elec()[0]
[40]:
-47.22493669052412

1.2.7. Fock 矩阵

  • F_0_ao \(F_{\mu \nu}^\sigma\), dim: \((\sigma, \mu, \nu)\), type: np.ndarray

\[F_{\mu \nu}^\sigma \xleftarrow{\textsf{HF contrib}} h_{\mu \nu} + (\mu \nu | \kappa \lambda) D_{\kappa \lambda}^{\sigma'} - c_\mathrm{x} (\mu \kappa | \nu \lambda) D_{\kappa \lambda}^\sigma\]
\[F_{\mu \nu}^\alpha \xleftarrow{\textsf{GGA contrib}} f_{\rho^\alpha} \phi_\mu \phi_\nu + \big[ (2 f_{\gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\gamma^{\alpha \beta}} \rho_r^{\beta}) \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu) \big]\]

需要注意,不像其他电子积分的原子轨道矩阵一样,Fock 矩阵是有自旋之分的。生成 Fock 矩阵的过程稍复杂,因此我们需要将 HF 贡献部分先计算,随后计算 GGA 贡献部分,最后加和。

[41]:
F_0_ao = gradh.F_0_ao
F_0_ao.shape
[41]:
(2, 15, 15)
[42]:
F_0_ao_ = (
    + H_0_ao
    + np.einsum("uvkl, ykl -> uv", eri0_ao, D)
    - cx * np.einsum("ukvl, xkl -> xuv", eri0_ao, D)
)
[43]:
F_0_ao_GGA_ = np.zeros_like(F_0_ao_)
F_0_ao_GGA_[0] = (
    + 2 * np.einsum("g, rg, rgu, gv -> uv", kerh.fg[0], grdh[0].rho_1, grdh[0].ao_1, grdh[0].ao_0)
    + np.einsum("g, rg, rgu, gv -> uv", kerh.fg[1], grdh[1].rho_1, grdh[0].ao_1, grdh[0].ao_0)
)
F_0_ao_GGA_[1] = (
    + 2 * np.einsum("g, rg, rgu, gv -> uv", kerh.fg[2], grdh[1].rho_1, grdh[0].ao_1, grdh[0].ao_0)
    + np.einsum("g, rg, rgu, gv -> uv", kerh.fg[1], grdh[0].rho_1, grdh[0].ao_1, grdh[0].ao_0)
)
F_0_ao_GGA_ += F_0_ao_GGA_.swapaxes(-1, -2)
F_0_ao_GGA_ += np.einsum("xg, gu, gv -> xuv", kerh.fr, grdh[0].ao_0, grdh[0].ao_0)
[44]:
F_0_ao_ += F_0_ao_GGA_
[45]:
np.allclose(F_0_ao_, F_0_ao)
[45]:
True
  • F_0_ao \(F_{pq}^\sigma\), dim: \((\sigma, p, q)\), type: np.ndarray

\[F_{pq}^\sigma = F_{\mu \nu}^\sigma C_{\mu p}^\sigma C_{\nu q}^\sigma\]
[46]:
F_0_mo = gradh.F_0_mo
F_0_mo.shape
[46]:
(2, 15, 15)
[47]:
np.allclose(np.einsum("xuv, xup, xvq -> xpq", F_0_ao, C, C), F_0_mo)
[47]:
True

1.3. 一阶 Skeleton 导数

1.3.1. 一阶核坐标梯度

\[E_\mathrm{tot}^\mathbb{A} \xleftarrow{\textsf{HF/nuc contrib}} h_{\mu \nu}^\mathbb{A} D_{\mu \nu}^\sigma + \frac{1}{2} (\mu \nu | \kappa \lambda)^\mathbb{A} D_{\mu \nu}^\sigma D_{\kappa \lambda}^{\sigma'} - \frac{c_\mathrm{x}}{2} (\mu \kappa | \nu \lambda)^\mathbb{A} D_{\mu \nu}^\sigma D_{\kappa \lambda}^{\sigma} - S_{i}^{\mathbb{A}, \sigma} \varepsilon_{i}^\sigma + E_\mathrm{nuc}^\mathbb{A}\]
\[E_\mathrm{tot}^\mathbb{A} \xleftarrow{\textsf{GGA contrib}} f_{\rho^\alpha} \rho^{\mathbb{A}, \alpha} + 2 f_{\gamma^{\alpha \alpha}} \rho_r^{\alpha} \rho_r^{\mathbb{A}, \alpha} + f_{\gamma^{\alpha \beta}} \rho_r^{\beta} \rho_r^{\mathbb{A}, \beta} + \mathrm{swap} (\alpha, \beta)\]
[48]:
E_1 = gradh.E_1
E_1
[48]:
array([[ 0.06565, -0.08058, -0.11324],
       [-0.0919 ,  0.01814,  0.02577],
       [ 0.00907,  0.05126,  0.00839],
       [ 0.01718,  0.01118,  0.07909]])
[49]:
E_1_ = (
    + np.einsum("Auv, xuv -> A", H_1_ao, D)
    + 0.5 * np.einsum("Auvkl, yuv, xkl -> A", eri1_ao, D, D)
    - 0.5 * cx * np.einsum("Aukvl, xuv, xkl -> A", eri1_ao, D, D)
    # - np.einsum("xApq, xpq, xp, xq -> A", S_1_mo, F_0_mo, mo_occ, mo_occ)
    - np.einsum("Ai, i -> A", S_1_mo[0, :, so[0], so[0]].diagonal(axis1=-1, axis2=-2), eo[0])
    - np.einsum("Ai, i -> A", S_1_mo[1, :, so[1], so[1]].diagonal(axis1=-1, axis2=-2), eo[1])
    + grad.rhf.grad_nuc(mol).reshape(-1)
).reshape((natm, 3))
[50]:
E_1_ += (
    + np.einsum("g, Atg -> At", kerh.fr[0], grdh[0].A_rho_1)
    + np.einsum("g, Atg -> At", kerh.fr[1], grdh[1].A_rho_1)
    + 2 * np.einsum("g, rg, Atrg -> At", kerh.fg[0], grdh[0].rho_1, grdh[0].A_rho_2)
    + 2 * np.einsum("g, rg, Atrg -> At", kerh.fg[2], grdh[1].rho_1, grdh[1].A_rho_2)
    + 1 * np.einsum("g, rg, Atrg -> At", kerh.fg[1], grdh[1].rho_1, grdh[0].A_rho_2)
    + 1 * np.einsum("g, rg, Atrg -> At", kerh.fg[1], grdh[0].rho_1, grdh[1].A_rho_2)
)
[51]:
E_1
[51]:
array([[ 0.06565, -0.08058, -0.11324],
       [-0.0919 ,  0.01814,  0.02577],
       [ 0.00907,  0.05126,  0.00839],
       [ 0.01718,  0.01118,  0.07909]])

1.3.2. Fock Skeleton 一阶导数:HF 部分

  • F_1_ao \(F_{\mu \nu}^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, \mu, \nu)\), type: np.ndarray

[52]:
F_1_ao = gradh.F_1_ao
F_1_ao.shape
[52]:
(2, 12, 15, 15)

该式的推导方式比 RKS 的情形要复杂很多。我们首先需要定义变量

  • A_gamma_1 \(\gamma^{\mathbb{A}, \sigma \sigma'}\), dim: \((\sigma \sigma', A, t, g)\), type: np.ndarray

\[\gamma^{\mathbb{A}, \sigma \sigma'} = \rho_r^{\mathbb{A}, \sigma} \rho_r^{\sigma'} + \rho_r^{\mathbb{A}, \sigma'} \rho_r^{\sigma}\]
[53]:
A_gamma_1 = np.zeros((3, natm, 3, grdh[0].ngrid))
A_gamma_1[0] = 2 * np.einsum("Atrg, rg -> Atg", grdh[0].A_rho_2, grdh[0].rho_1)
A_gamma_1[1] = (
    + np.einsum("Atrg, rg -> Atg", grdh[0].A_rho_2, grdh[1].rho_1)
    + np.einsum("Atrg, rg -> Atg", grdh[1].A_rho_2, grdh[0].rho_1)
)
A_gamma_1[2] = 2 * np.einsum("Atrg, rg -> Atg", grdh[1].A_rho_2, grdh[1].rho_1)

我们之后生成的 Fock 矩阵的 Skeleton 导数会放在变量 F_1_ao_ 中 (后面加上下划线以示区别)。HF 部分的贡献相当容易给出:

\[F_{\mu \nu}^{\mathbb{A}, \sigma} \xleftarrow{\textsf{HF contrib}} h_{\mu \nu}^\mathbb{A} + (\mu \nu | \kappa \lambda)^\mathbb{A} D_{\kappa \lambda}^{\sigma'} - c_\mathrm{x} (\mu \kappa | \nu \lambda)^\mathbb{A} D_{\kappa \lambda}^\sigma\]
[54]:
F_1_ao_ = (
    + H_1_ao
    + np.einsum("Auvkl, ykl -> Auv", eri1_ao, D)
    - cx * np.einsum("Aukvl, xkl -> xAuv", eri1_ao, D)
)

1.3.3. Fock Skeleton 一阶导数:GGA \(\alpha\) 自旋部分

GGA 部分的贡献会很复杂。我们先回顾一下 GGA 对 Fock 矩阵的贡献方式:

\[F_{\mu \nu}^\alpha \xleftarrow{\textsf{GGA contrib}} f_{\rho^\alpha} \phi_\mu \phi_\nu + \big[ (2 f_{\gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\gamma^{\alpha \beta}} \rho_r^{\beta}) \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu) \big]\]

我们按照下述方式给出 Skeleton 导数。

  • 0:\(f_{\rho^\alpha}\) 的所有 Skeleton 导数贡献

  • 1:\(f_{\gamma^{\alpha \beta}}\) 关于 \(\rho^\sigma\) 的所有偏导部分的 Skeleton 导数贡献

  • 2:\(f_{\gamma^{\alpha \beta}}\) 关于 \(\gamma^{\sigma \sigma'}\) 的所有偏导部分的 Skeleton 导数贡献

  • 3:上式中出现的 \(\rho_r^\sigma\) 的 Skeleton 导数贡献

  • 4:上式中出现的原子轨道格点的 Skeleton 导数贡献

\[F_{\mu \nu}^{\mathbb{A}, \alpha} \xleftarrow{\textsf{GGA contrib 0}} \left[ f_{\rho^\alpha \rho^\alpha} \rho^{\mathbb{A}, \alpha} + f_{\rho^\alpha \rho^\beta} \rho^{\mathbb{A}, \beta} + f_{\rho^\alpha \gamma^{\alpha \alpha}} \gamma^{\mathbb{A}, \alpha \alpha} + f_{\rho^\alpha \gamma^{\alpha \beta}} \gamma^{\mathbb{A}, \alpha \beta} + f_{\rho^\alpha \gamma^{\beta \beta}} \gamma^{\mathbb{A}, \beta \beta} \right] \phi_\mu \phi_\nu\]
\[F_{\mu \nu}^{\mathbb{A}, \alpha} \xleftarrow{\textsf{GGA contrib 1}} \big[ (2 f_{\rho^\alpha \gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\rho^\alpha \gamma^{\alpha \beta}} \rho_r^{\beta}) \rho^{\mathbb{A}, \alpha} + (2 f_{\rho^\beta \gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\rho^\beta \gamma^{\alpha \beta}} \rho_r^{\beta}) \rho^{\mathbb{A}, \beta} \big] \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu)\]
\[F_{\mu \nu}^{\mathbb{A}, \alpha} \xleftarrow{\textsf{GGA contrib 2}} \big[ (2 f_{\gamma^{\alpha \alpha} \gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\gamma^{\alpha \beta} \gamma^{\alpha \alpha}} \rho_r^\beta) \gamma^{\mathbb{A}, \alpha \alpha} + (2 f_{\gamma^{\alpha \alpha} \gamma^{\alpha \beta}} \rho_r^\alpha + f_{\gamma^{\alpha \beta} \gamma^{\alpha \beta}} \rho_r^\beta) \gamma^{\mathbb{A}, \alpha \beta} + (2 f_{\gamma^{\alpha \alpha} \gamma^{\beta \beta}} \rho_r^\alpha + f_{\gamma^{\alpha \beta} \gamma^{\beta \beta}} \rho_r^\beta) \gamma^{\mathbb{A}, \beta \beta} \big] \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu)\]
\[F_{\mu \nu}^{\mathbb{A}, \alpha} \xleftarrow{\textsf{GGA contrib 3}} \big[ 2 f_{\gamma^{\alpha \alpha}} \rho_r^{\mathbb{A}, \alpha} + f_{\gamma^{\alpha \beta}} \rho_r^{\mathbb{A}, \beta} \big] \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu)\]
\[F_{\mu \nu}^{A_t, \alpha} \xleftarrow{\textsf{GGA contrib 4}} - \big[ f_{\rho^\alpha} \phi_{t \mu_A} \phi_\nu + (2 f_{\gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\gamma^{\alpha \beta}} \rho_r^{\beta}) (\phi_{tr \mu_A} \phi_\nu + \phi_{t \mu_A} \phi_{r \nu}) \big] + \mathrm{swap} (\mu, \nu)\]

由于两种自旋所取用泛函核不同,因此 \(\alpha, \beta\) 两种自旋对 Fock 矩阵 Skeleton 导数的贡献代码应当要分开写。我们将所有 \(\alpha\) 自旋下,GGA 的所有贡献写到 F_1_ao_GGA_alpha_ 中。

  • F_1_ao_GGA_alpha_, type: List[np.ndarray]; for each element in list, dim: \((A, t, \mu, \nu)\)

    • 之所以每个列表元素的维度不是 \((\mathbb{A}, \mu, \nu)\),单纯地是因为在 GridHelper 中的所有格点导数均采用 \((A, t)\)\((n_\mathrm{Atom}, 3)\) 的维度大小的形式,而不是使用 pyxdh 项目中通常会用的 \((\mathbb{A}, )\)\((n_\mathrm{Atom} \times 3, )\) 的形式。

[55]:
F_1_ao_GGA_alpha_ = [None for _ in range(5)]
\[F_{\mu \nu}^{\mathbb{A}, \alpha} \xleftarrow{\textsf{GGA contrib 0}} \left[ f_{\rho^\alpha \rho^\alpha} \rho^{\mathbb{A}, \alpha} + f_{\rho^\alpha \rho^\beta} \rho^{\mathbb{A}, \beta} + f_{\rho^\alpha \gamma^{\alpha \alpha}} \gamma^{\mathbb{A}, \alpha \alpha} + f_{\rho^\alpha \gamma^{\alpha \beta}} \gamma^{\mathbb{A}, \alpha \beta} + f_{\rho^\alpha \gamma^{\beta \beta}} \gamma^{\mathbb{A}, \beta \beta} \right] \phi_\mu \phi_\nu\]
[56]:
tmp = (
    + kerh.frr[0] * grdh[0].A_rho_1 + kerh.frr[1] * grdh[1].A_rho_1
    + kerh.frg[0] * A_gamma_1[0] + kerh.frg[1] * A_gamma_1[1] + kerh.frg[2] * A_gamma_1[2]
)
F_1_ao_GGA_alpha_[0] = np.einsum("Atg, gu, gv -> Atuv", tmp, grdh[0].ao_0, grdh[0].ao_0)
\[F_{\mu \nu}^{\mathbb{A}, \alpha} \xleftarrow{\textsf{GGA contrib 1}} \big[ (2 f_{\rho^\alpha \gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\rho^\alpha \gamma^{\alpha \beta}} \rho_r^{\beta}) \rho^{\mathbb{A}, \alpha} + (2 f_{\rho^\beta \gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\rho^\beta \gamma^{\alpha \beta}} \rho_r^{\beta}) \rho^{\mathbb{A}, \beta} \big] \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu)\]
[57]:
tmp = (
    + np.einsum("rg, Atg -> Atrg", 2 * kerh.frg[0] * grdh[0].rho_1 + kerh.frg[1] * grdh[1].rho_1, grdh[0].A_rho_1)
    + np.einsum("rg, Atg -> Atrg", 2 * kerh.frg[3] * grdh[0].rho_1 + kerh.frg[4] * grdh[1].rho_1, grdh[1].A_rho_1)
)
F_1_ao_GGA_alpha_[1] = np.einsum("Atrg, rgu, gv -> Atuv", tmp, grdh[0].ao_1, grdh[0].ao_0)
F_1_ao_GGA_alpha_[1] += F_1_ao_GGA_alpha_[1].swapaxes(-1, -2)
\[F_{\mu \nu}^{\mathbb{A}, \alpha} \xleftarrow{\textsf{GGA contrib 2}} \big[ (2 f_{\gamma^{\alpha \alpha} \gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\gamma^{\alpha \beta} \gamma^{\alpha \alpha}} \rho_r^\beta) \gamma^{\mathbb{A}, \alpha \alpha} + (2 f_{\gamma^{\alpha \alpha} \gamma^{\alpha \beta}} \rho_r^\alpha + f_{\gamma^{\alpha \beta} \gamma^{\alpha \beta}} \rho_r^\beta) \gamma^{\mathbb{A}, \alpha \beta} + (2 f_{\gamma^{\alpha \alpha} \gamma^{\beta \beta}} \rho_r^\alpha + f_{\gamma^{\alpha \beta} \gamma^{\beta \beta}} \rho_r^\beta) \gamma^{\mathbb{A}, \beta \beta} \big] \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu)\]
[58]:
tmp = (
    + np.einsum("rg, Atg -> Atrg", 2 * kerh.fgg[0] * grdh[0].rho_1 + kerh.fgg[1] * grdh[1].rho_1, A_gamma_1[0])
    + np.einsum("rg, Atg -> Atrg", 2 * kerh.fgg[1] * grdh[0].rho_1 + kerh.fgg[3] * grdh[1].rho_1, A_gamma_1[1])
    + np.einsum("rg, Atg -> Atrg", 2 * kerh.fgg[2] * grdh[0].rho_1 + kerh.fgg[4] * grdh[1].rho_1, A_gamma_1[2])
)
F_1_ao_GGA_alpha_[2] = np.einsum("Atrg, rgu, gv -> Atuv", tmp, grdh[0].ao_1, grdh[0].ao_0)
F_1_ao_GGA_alpha_[2] += F_1_ao_GGA_alpha_[2].swapaxes(-1, -2)
\[F_{\mu \nu}^{\mathbb{A}, \alpha} \xleftarrow{\textsf{GGA contrib 4}} \big[ 2 f_{\gamma^{\alpha \alpha}} \rho_r^{\mathbb{A}, \alpha} + f_{\gamma^{\alpha \beta}} \rho_r^{\mathbb{A}, \beta} \big] \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu)\]
[59]:
tmp = 2 * kerh.fg[0] * grdh[0].A_rho_2 + kerh.fg[1] * grdh[1].A_rho_2
F_1_ao_GGA_alpha_[3] = np.einsum("Atrg, rgu, gv -> Atuv", tmp, grdh[0].ao_1, grdh[0].ao_0)
F_1_ao_GGA_alpha_[3] += F_1_ao_GGA_alpha_[3].swapaxes(-1, -2)
\[F_{\mu \nu}^{A_t, \alpha} \xleftarrow{\textsf{GGA contrib 5}} - \big[ f_{\rho^\alpha} \phi_{t \mu_A} \phi_\nu + (2 f_{\gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\gamma^{\alpha \beta}} \rho_r^{\beta}) (\phi_{tr \mu_A} \phi_\nu + \phi_{t \mu_A} \phi_{r \nu}) \big] + \mathrm{swap} (\mu, \nu)\]
[60]:
mol_slice = gradh.mol_slice
[61]:
tmp = 2 * kerh.fg[0] * grdh[0].rho_1 + kerh.fg[1] * grdh[1].rho_1

F_1_ao_GGA_alpha_[4] = np.zeros((natm, 3, nao, nao))
for A in range(natm):
    sA = mol_slice(A)
    F_1_ao_GGA_alpha_[4][A, :, sA, :] += - np.einsum("g, tgu, gv -> tuv", kerh.fr[0], grdh[0].ao_1[:, :, sA], grdh[0].ao_0)
    F_1_ao_GGA_alpha_[4][A, :, sA, :] += - np.einsum("rg, trgu, gv -> tuv", tmp, grdh[0].ao_2[:, :, :, sA], grdh[0].ao_0)
    F_1_ao_GGA_alpha_[4][A, :, sA, :] += - np.einsum("rg, tgu, rgv -> tuv", tmp, grdh[0].ao_1[:, :, sA], grdh[0].ao_1)
F_1_ao_GGA_alpha_[4] += F_1_ao_GGA_alpha_[4].swapaxes(-1, -2)

最后,我们将 \(\alpha\) 自旋的 GGA 贡献部分加到 HF 贡献部分,得到最终的 \(F_{\mu \nu}^{\mathbb{A}, \alpha}\)

[62]:
F_1_ao_[0] += np.array(F_1_ao_GGA_alpha_).sum(axis=0).reshape((natm * 3, nao, nao))
[63]:
np.allclose(F_1_ao_[0], F_1_ao[0])
[63]:
True

1.3.4. Fock Skeleton 一阶导数:GGA \(\beta\) 自旋部分

但需要留意,我们尚没有实现 \(\beta\) 自旋的贡献部分。尽管思路是相同的,但代码应当要重新写一遍。

[64]:
F_1_ao_GGA_beta_ = [None for _ in range(5)]
\[F_{\mu \nu}^{\mathbb{A}, \beta} \xleftarrow{\textsf{GGA contrib 0}} \left[ f_{\rho^\beta \rho^\alpha} \rho^{\mathbb{A}, \alpha} + f_{\rho^\beta \rho^\beta} \rho^{\mathbb{A}, \beta} + f_{\rho^\beta \gamma^{\alpha \alpha}} \gamma^{\mathbb{A}, \alpha \alpha} + f_{\rho^\beta \gamma^{\beta \alpha}} \gamma^{\mathbb{A}, \beta \alpha} + f_{\rho^\beta \gamma^{\beta \beta}} \gamma^{\mathbb{A}, \beta \beta} \right] \phi_\mu \phi_\nu\]
[65]:
tmp = (
    + kerh.frr[1] * grdh[0].A_rho_1 + kerh.frr[2] * grdh[1].A_rho_1
    + kerh.frg[3] * A_gamma_1[0] + kerh.frg[4] * A_gamma_1[1] + kerh.frg[5] * A_gamma_1[2]
)
F_1_ao_GGA_beta_[0] = np.einsum("Atg, gu, gv -> Atuv", tmp, grdh[0].ao_0, grdh[0].ao_0)
\[F_{\mu \nu}^{\mathbb{A}, \beta} \xleftarrow{\textsf{GGA contrib 1}} \big[ (2 f_{\rho^\alpha \gamma^{\beta \beta}} \rho_r^\beta + f_{\rho^\alpha \gamma^{\beta \alpha}} \rho_r^{\alpha}) \rho^{\mathbb{A}, \alpha} + (2 f_{\rho^\beta \gamma^{\beta \beta}} \rho_r^\beta + f_{\rho^\beta \gamma^{\beta \alpha}} \rho_r^{\alpha}) \rho^{\mathbb{A}, \beta} \big] \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu)\]
[66]:
tmp = (
    + np.einsum("rg, Atg -> Atrg", 2 * kerh.frg[2] * grdh[1].rho_1 + kerh.frg[1] * grdh[0].rho_1, grdh[0].A_rho_1)
    + np.einsum("rg, Atg -> Atrg", 2 * kerh.frg[5] * grdh[1].rho_1 + kerh.frg[4] * grdh[0].rho_1, grdh[1].A_rho_1)
)
F_1_ao_GGA_beta_[1] = np.einsum("Atrg, rgu, gv -> Atuv", tmp, grdh[0].ao_1, grdh[0].ao_0)
F_1_ao_GGA_beta_[1] += F_1_ao_GGA_beta_[1].swapaxes(-1, -2)
\[F_{\mu \nu}^{\mathbb{A}, \beta} \xleftarrow{\textsf{GGA contrib 2}} \big[ (2 f_{\gamma^{\beta \beta} \gamma^{\alpha \alpha}} \rho_r^\beta + f_{\gamma^{\beta \alpha} \gamma^{\alpha \alpha}} \rho_r^\alpha) \gamma^{\mathbb{A}, \alpha \alpha} + (2 f_{\gamma^{\beta \beta} \gamma^{\beta \alpha}} \rho_r^\beta + f_{\gamma^{\beta \alpha} \gamma^{\beta \alpha}} \rho_r^\alpha) \gamma^{\mathbb{A}, \beta \alpha} + (2 f_{\gamma^{\beta \beta} \gamma^{\beta \beta}} \rho_r^\beta + f_{\gamma^{\beta \alpha} \gamma^{\beta \beta}} \rho_r^\alpha) \gamma^{\mathbb{A}, \beta \beta} \big] \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu)\]
[67]:
tmp = (
    + np.einsum("rg, Atg -> Atrg", 2 * kerh.fgg[2] * grdh[1].rho_1 + kerh.fgg[1] * grdh[0].rho_1, A_gamma_1[0])
    + np.einsum("rg, Atg -> Atrg", 2 * kerh.fgg[4] * grdh[1].rho_1 + kerh.fgg[3] * grdh[0].rho_1, A_gamma_1[1])
    + np.einsum("rg, Atg -> Atrg", 2 * kerh.fgg[5] * grdh[1].rho_1 + kerh.fgg[4] * grdh[0].rho_1, A_gamma_1[2])
)
F_1_ao_GGA_beta_[2] = np.einsum("Atrg, rgu, gv -> Atuv", tmp, grdh[0].ao_1, grdh[0].ao_0)
F_1_ao_GGA_beta_[2] += F_1_ao_GGA_beta_[2].swapaxes(-1, -2)
\[F_{\mu \nu}^{\mathbb{A}, \beta} \xleftarrow{\textsf{GGA contrib 4}} \big[ 2 f_{\gamma^{\beta \beta}} \rho_r^{\mathbb{A}, \beta} + f_{\gamma^{\beta \alpha}} \rho_r^{\mathbb{A}, \alpha} \big] \phi_{r \mu} \phi_\nu + \mathrm{swap} (\mu, \nu)\]
[68]:
tmp = 2 * kerh.fg[2] * grdh[1].A_rho_2 + kerh.fg[1] * grdh[0].A_rho_2
F_1_ao_GGA_beta_[3] = np.einsum("Atrg, rgu, gv -> Atuv", tmp, grdh[0].ao_1, grdh[0].ao_0)
F_1_ao_GGA_beta_[3] += F_1_ao_GGA_beta_[3].swapaxes(-1, -2)
\[F_{\mu \nu}^{A_t, \beta} \xleftarrow{\textsf{GGA contrib 5}} - \big[ f_{\rho^\beta} \phi_{t \mu_A} \phi_\nu + (2 f_{\gamma^{\beta \beta}} \rho_r^\beta + f_{\gamma^{\beta \alpha}} \rho_r^{\alpha}) (\phi_{tr \mu_A} \phi_\nu + \phi_{t \mu_A} \phi_{r \nu}) \big] + \mathrm{swap} (\mu, \nu)\]
[69]:
mol_slice = gradh.mol_slice
[70]:
tmp = 2 * kerh.fg[2] * grdh[1].rho_1 + kerh.fg[1] * grdh[0].rho_1

F_1_ao_GGA_beta_[4] = np.zeros((natm, 3, nao, nao))
for A in range(natm):
    sA = mol_slice(A)
    F_1_ao_GGA_beta_[4][A, :, sA, :] += - np.einsum("g, tgu, gv -> tuv", kerh.fr[1], grdh[0].ao_1[:, :, sA], grdh[0].ao_0)
    F_1_ao_GGA_beta_[4][A, :, sA, :] += - np.einsum("rg, trgu, gv -> tuv", tmp, grdh[0].ao_2[:, :, :, sA], grdh[0].ao_0)
    F_1_ao_GGA_beta_[4][A, :, sA, :] += - np.einsum("rg, tgu, rgv -> tuv", tmp, grdh[0].ao_1[:, :, sA], grdh[0].ao_1)
F_1_ao_GGA_beta_[4] += F_1_ao_GGA_beta_[4].swapaxes(-1, -2)

\(\beta\) 自旋的 GGA 贡献部分加到 HF 贡献部分,得到最终的 \(F_{\mu \nu}^{\mathbb{A}, \beta}\)

[71]:
F_1_ao_[1] += np.array(F_1_ao_GGA_beta_).sum(axis=0).reshape((natm * 3, nao, nao))

最终,我们可以验证,我们计算所得到的 Fock 矩阵与 pyxdh 给出的结果一致:

[72]:
np.allclose(F_1_ao_, F_1_ao)
[72]:
True

需要指出的是,pyxdh 中计算 F_1_ao 的方式并不是直接执行类似于上述的代码,而是利用了 PySCF 的 hessian.uks.make_h1 方法。

1.4. A 张量

1.4.1. A 张量计算函数:前置工作

我们应当留意到 A 张量从定义上是从 Fock 矩阵 \(F_{\mu \nu}^\sigma\) 的 U 导数产生的。我们下面对当输入的矩阵 X \(X_{ai}^{\mathbb{A}, \sigma}\) 为任意矩阵时的情况作讨论。这里的 \(\mathbb{A}\) 可以是任意的,未必要指代原子核坐标分量。

[73]:
Ax0_Core = gradh.Ax0_Core
X = (np.random.randn(3, nvir[0], nocc[0]), np.random.randn(3, nvir[1], nocc[1]))

我们将 pyxdh 输出的 \(\mathtt{AX}_{ai}^{\mathbb{A}, \sigma}\) 储存在 Ax 中。由于 A 张量与 X 矩阵之间的缩并方式与 RKS 不太一样,因此我们不会采用类似于 \(A_{ai, bj} X_{bj}^\mathbb{A}\) 的写法。

  • X \(X_{ai}^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, a, i)\), type: Tuple[np.ndarray]

  • Ax \(\mathtt{AX}_{ai}^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, a, i)\), type: Tuple[np.ndarray]

需要指出,Ax0_Core 函数不只可以实现非占-占据轨道的计算,也可以实现任意分子轨道下的分割计算。

[74]:
Ax = Ax0_Core(sv, so, sv, so)(X)

在实际进行 A 张量计算前,我们会对输入的 \(X_{ai}^{\mathbb{A}, \sigma}\) 作到原子轨道的转换:

  • dmX \(X_{\mu \nu}^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, \mu, \nu)\), type: np.ndarray

\[X_{\mu \nu}^{\mathbb{A}, \sigma} = C_{\mu a}^\sigma X_{ai}^{\mathbb{A}, \sigma} C_{\nu i}^\sigma + \mathrm{swap} (\mu, \nu)\]
[75]:
prop_dim = X[0].shape[0]
dmX = np.zeros((2, prop_dim, nao, nao))
dmX[0] = Cv[0] @ X[0] @ Co[0].T
dmX[1] = Cv[1] @ X[1] @ Co[1].T
dmX += dmX.swapaxes(-1, -2)
dmX.shape
[75]:
(2, 3, 15, 15)

1.4.2. A 张量计算函数:HF 贡献部分

  • ax_ao_HF_, dim: \((\sigma, \mathbb{A}, \mu, \nu)\), type: np.ndarray

\[\mathtt{AX}_{\kappa \lambda}^{\mathbb{A}, \sigma} \xleftarrow{\textsf{HF contrib}} (\mu \nu | \kappa \lambda) X_{\kappa \lambda}^{\sigma'} - c_\mathrm{x} (\mu \kappa | \nu \lambda) X_{\kappa \lambda}^{\sigma}\]
[76]:
ax_ao_HF_ = (
    + np.einsum("uvkl, xAkl -> Auv", eri0_ao, dmX)
    - cx * np.einsum("ukvl, xAkl -> xAuv", eri0_ao, dmX)
)
ax_ao_HF_.shape
[76]:
(2, 3, 15, 15)
  • Ax_HF_, dim: \((\sigma, \mathbb{A}, a, i)\)

\[\mathtt{AX}_{ai}^{\mathbb{A}, \sigma} \xleftarrow{\textsf{HF contrib}} C_{\mu a}^\sigma \mathtt{AX}_{\kappa \lambda}^{\mathbb{A}, \sigma} C_{\nu i}^\sigma\]
[77]:
Ax_HF_ = (np.zeros((prop_dim, nvir[0], nocc[0])), np.zeros((prop_dim, nvir[1], nocc[1])))
Ax_HF_[0][:] = Cv[0].T @ ax_ao_HF_[0] @ Co[0]
Ax_HF_[1][:] = Cv[1].T @ ax_ao_HF_[1] @ Co[1]

1.4.3. A 张量计算函数:\(f_{\rho}\) 导数贡献部分

  • rho_X_0 \(\varrho^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, g)\)

  • rho_X_1 \(\varrho_g^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, r, g)\)

\[\begin{split}\begin{align} \varrho^{\mathbb{A}, \sigma} &= X_{\kappa \lambda}^{\mathbb{A}, \sigma} \phi_\kappa \phi_\lambda \\ \varrho_r^{\mathbb{A}, \sigma} &= 2 X_{\kappa \lambda}^{\mathbb{A}, \sigma} \phi_{r \kappa} \phi_\lambda \end{align}\end{split}\]
[78]:
tmp_K = np.einsum("xAkl, gl -> xAgk", dmX, grdh[0].ao_0)
rho_X_0 = np.einsum("gk, xAgk -> xAg", grdh[0].ao_0, tmp_K)
rho_X_1 = 2 * np.einsum("rgk, xAgk -> xArg", grdh[0].ao_1, tmp_K)
  • gamma_X_0 \(\gamma^{\mathbb{A}, \sigma \sigma'}\), dim: \((\sigma \sigma', \mathbb{A}, g)\)

需要留意到,这里单纯地因为符号不够用,因此与 Fock Skeleton 导数处使用了相同的 \(\gamma^{\mathbb{A}, \sigma \sigma'}\) 符号。但这两者的定义是不同的 (即使是相似的)。

\[\gamma^{\mathbb{A}, \sigma \sigma'} = \varrho_r^{\mathbb{A}, \sigma} \rho_r^{\sigma'} + \varrho_r^{\mathbb{A}, \sigma'} \rho_r^{\sigma}\]
[79]:
gamma_X_0 = np.zeros((3, prop_dim, grdh[0].ngrid))
gamma_X_0[0] = 2 * np.einsum("Arg, rg -> Ag", rho_X_1[0], grdh[0].rho_1)
gamma_X_0[1] = (
    + np.einsum("Arg, rg -> Ag", rho_X_1[0], grdh[1].rho_1)
    + np.einsum("Arg, rg -> Ag", rho_X_1[1], grdh[0].rho_1)
)
gamma_X_0[2] = 2 * np.einsum("Arg, rg -> Ag", rho_X_1[1], grdh[1].rho_1)
  • M_0_ \(M^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, g)\)

[80]:
M_0_ = np.zeros((2, prop_dim, ngrid))
\[M^{\mathbb{A}, \alpha} = f_{\rho^\alpha \rho^\alpha} \varrho^{\mathbb{A}, \alpha} + f_{\rho^\alpha \rho^\beta} \varrho^{\mathbb{A}, \beta} + f_{\rho^\alpha \gamma^{\alpha \alpha}} \gamma_r^{\mathbb{A}, \alpha \alpha} + f_{\rho^\alpha \gamma^{\alpha \beta}} \gamma_r^{\mathbb{A}, \alpha \beta} + f_{\rho^\alpha \gamma^{\beta \beta}} \gamma_r^{\mathbb{A}, \beta \beta}\]
[81]:
M_0_[0] = (
    + kerh.frr[0] * rho_X_0[0]
    + kerh.frr[1] * rho_X_0[1]
    + kerh.frg[0] * gamma_X_0[0]
    + kerh.frg[1] * gamma_X_0[1]
    + kerh.frg[2] * gamma_X_0[2]
)
\[M^{\mathbb{A}, \beta} = f_{\rho^\beta \rho^\alpha} \varrho^{\mathbb{A}, \alpha} + f_{\rho^\beta \rho^\beta} \varrho^{\mathbb{A}, \beta} + f_{\rho^\beta \gamma^{\alpha \alpha}} \gamma^{\mathbb{A}, \alpha \alpha} + f_{\rho^\beta \gamma^{\beta \alpha}} \gamma^{\mathbb{A}, \beta \alpha} + f_{\rho^\beta \gamma^{\beta \beta}} \gamma^{\mathbb{A}, \beta \beta}\]
[82]:
M_0_[1] = (
    + kerh.frr[1] * rho_X_0[0]
    + kerh.frr[2] * rho_X_0[1]
    + kerh.frg[3] * gamma_X_0[0]
    + kerh.frg[4] * gamma_X_0[1]
    + kerh.frg[5] * gamma_X_0[2]
)
  • Ax_GGA_M_0_, dim: \((\sigma, \mathbb{A}, a, i)\), type: Tuple[np.ndarray]

\[\mathtt{AX}_{ai}^{\mathbb{A}, \alpha} \xleftarrow{M^{\mathbb{A}, \alpha} \textsf{ contrib}} M^{\mathbb{A}, \alpha} \phi_\mu \phi_\nu C_{\mu a}^\alpha C_{\nu i}^\alpha\]
[83]:
ax_ao_M_0_ = np.einsum("xAg, gu, gv -> xAuv", M_0_, grdh[0].ao_0, grdh[0].ao_0)
[84]:
Ax_GGA_M_0_ = (
    np.einsum("Auv, ua, vi -> Aai", ax_ao_M_0_[0], Cv[0], Co[0]),
    np.einsum("Auv, ua, vi -> Aai", ax_ao_M_0_[1], Cv[1], Co[1])
)

1.4.4. A 张量计算函数:\(f_{\gamma}\)\(\rho\) 导数贡献部分

  • M_1_ \(M_r^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, r, g)\)

[85]:
M_1_ = np.zeros((2, prop_dim, 3, ngrid))
\[\begin{split}\begin{align} M_r^{\mathbb{A}, \alpha} &= (2 f_{\rho^\alpha \gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\rho^\alpha \gamma^{\alpha \beta}} \rho_r^{\beta}) \varrho^{\mathbb{A}, \alpha} + (2 f_{\rho^\beta \gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\rho^\beta \gamma^{\alpha \beta}} \rho_r^{\beta}) \varrho^{\mathbb{A}, \beta} \\ &\quad+ (2 f_{\gamma^{\alpha \alpha} \gamma^{\alpha \alpha}} \rho_r^\alpha + f_{\gamma^{\alpha \beta} \gamma^{\alpha \alpha}} \rho_r^\beta) \gamma^{\mathbb{A}, \alpha \alpha} + (2 f_{\gamma^{\alpha \alpha} \gamma^{\alpha \beta}} \rho_r^\alpha + f_{\gamma^{\alpha \beta} \gamma^{\alpha \beta}} \rho_r^\beta) \gamma^{\mathbb{A}, \alpha \beta} + (2 f_{\gamma^{\alpha \alpha} \gamma^{\beta \beta}} \rho_r^\alpha + f_{\gamma^{\alpha \beta} \gamma^{\beta \beta}} \rho_r^\beta) \gamma^{\mathbb{A}, \beta \beta} \\ &\quad+ 2 f_{\gamma^{\alpha \alpha}} \varrho_r^{\mathbb{A}, \alpha} + f_{\gamma^{\alpha \beta}} \varrho_r^{\mathbb{A}, \beta} \end{align}\end{split}\]
[86]:
M_1_[0] = (
    + np.einsum("rg, Ag -> Arg", 2 * kerh.frg[0] * grdh[0].rho_1 + kerh.frg[1] * grdh[1].rho_1, rho_X_0[0])
    + np.einsum("rg, Ag -> Arg", 2 * kerh.frg[3] * grdh[0].rho_1 + kerh.frg[4] * grdh[1].rho_1, rho_X_0[1])
    + np.einsum("rg, Ag -> Arg", 2 * kerh.fgg[0] * grdh[0].rho_1 + kerh.fgg[1] * grdh[1].rho_1, gamma_X_0[0])
    + np.einsum("rg, Ag -> Arg", 2 * kerh.fgg[1] * grdh[0].rho_1 + kerh.fgg[3] * grdh[1].rho_1, gamma_X_0[1])
    + np.einsum("rg, Ag -> Arg", 2 * kerh.fgg[2] * grdh[0].rho_1 + kerh.fgg[4] * grdh[1].rho_1, gamma_X_0[2])
    + 2 * kerh.fg[0] * rho_X_1[0] + kerh.fg[1] * rho_X_1[1]
)
\[\begin{split}\begin{align} M_r^{\mathbb{A}, \beta} &= (2 f_{\rho^\alpha \gamma^{\beta \beta}} \rho_r^\beta + f_{\rho^\alpha \gamma^{\beta \alpha}} \rho_r^{\alpha}) \varrho^{\mathbb{A}, \alpha} + (2 f_{\rho^\beta \gamma^{\beta \beta}} \rho_r^\beta + f_{\rho^\beta \gamma^{\beta \alpha}} \rho_r^{\alpha}) \varrho^{\mathbb{A}, \beta} \\ &\quad+ (2 f_{\gamma^{\beta \beta} \gamma^{\alpha \alpha}} \rho_r^\beta + f_{\gamma^{\beta \alpha} \gamma^{\alpha \alpha}} \rho_r^\alpha) \gamma^{\mathbb{A}, \alpha \alpha} + (2 f_{\gamma^{\beta \beta} \gamma^{\beta \alpha}} \rho_r^\beta + f_{\gamma^{\beta \alpha} \gamma^{\beta \alpha}} \rho_r^\alpha) \gamma^{\mathbb{A}, \beta \alpha} + (2 f_{\gamma^{\beta \beta} \gamma^{\beta \beta}} \rho_r^\beta + f_{\gamma^{\beta \alpha} \gamma^{\beta \beta}} \rho_r^\alpha) \gamma^{\mathbb{A}, \beta \beta} \\ &\quad+ 2 f_{\gamma^{\beta \beta}} \varrho_r^{\mathbb{A}, \beta} + f_{\gamma^{\beta \alpha}} \varrho_r^{\mathbb{A}, \alpha} \end{align}\end{split}\]
[87]:
M_1_[1] = (
    + np.einsum("rg, Ag -> Arg", 2 * kerh.frg[2] * grdh[1].rho_1 + kerh.frg[1] * grdh[0].rho_1, rho_X_0[0])
    + np.einsum("rg, Ag -> Arg", 2 * kerh.frg[5] * grdh[1].rho_1 + kerh.frg[4] * grdh[0].rho_1, rho_X_0[1])
    + np.einsum("rg, Ag -> Arg", 2 * kerh.fgg[2] * grdh[1].rho_1 + kerh.fgg[1] * grdh[0].rho_1, gamma_X_0[0])
    + np.einsum("rg, Ag -> Arg", 2 * kerh.fgg[4] * grdh[1].rho_1 + kerh.fgg[3] * grdh[0].rho_1, gamma_X_0[1])
    + np.einsum("rg, Ag -> Arg", 2 * kerh.fgg[5] * grdh[1].rho_1 + kerh.fgg[4] * grdh[0].rho_1, gamma_X_0[2])
    + 2 * kerh.fg[2] * rho_X_1[1] + kerh.fg[1] * rho_X_1[0]
)
  • Ax_GGA_M_1_, dim: \((\sigma, \mathbb{A}, a, i)\), type: Tuple[np.ndarray]

\[\mathtt{AX}_{ai}^{\mathbb{A}, \alpha} \xleftarrow{M_r^{\mathbb{A}, \alpha} \textsf{ contrib}} M_r^{\mathbb{A}, \alpha} \phi_{r \mu} \phi_\nu C_{\mu a}^\alpha C_{\nu i}^\alpha + \mathrm{swap} (\mu, \nu)\]
[88]:
ax_ao_M_1_ = np.einsum("xArg, rgu, gv -> xAuv", M_1_, grdh[0].ao_1, grdh[0].ao_0)
ax_ao_M_1_ += ax_ao_M_1_.swapaxes(-1, -2)
[89]:
Ax_GGA_M_1_ = (
    np.einsum("Auv, ua, vi -> Aai", ax_ao_M_1_[0], Cv[0], Co[0]),
    np.einsum("Auv, ua, vi -> Aai", ax_ao_M_1_[1], Cv[1], Co[1])
)

最后我们可以验证一下计算过程的正确性:

[90]:
(
    np.allclose(Ax_HF_[0] + Ax_GGA_M_0_[0] + Ax_GGA_M_1_[0], Ax[0]),
    np.allclose(Ax_HF_[1] + Ax_GGA_M_0_[1] + Ax_GGA_M_1_[1], Ax[1])
)
[90]:
(True, True)

作者注意到了 A 张量的生成过程与 Fock Skeleton 导数生成的过程极其相似。在以后的程序版本中,可能会考虑引入对 M_0 \(M^{\mathbb{A}, \sigma}\)M_1 \(M_r^{\mathbb{A}, \sigma}\) 的显式定义,避免程序重复并避免编写失误。

1.5. 一阶 U 矩阵

事实上,为一阶梯度所使用的所有变量都已经考虑完毕了 (因为一阶梯度不需要使用一阶 U 矩阵)。在此生成的一阶 U 矩阵有两个目的:其一是用来验证各种数值梯度;其二是熟悉 UKS 下 CP-HF 方程。

1.5.1. 数值一阶 U 矩阵

  • nd_C \(\partial_\mathbb{A} C_{\mu p}^\sigma\), dim: \((\sigma, \mathbb{A}, \mu, p)\),通过数值导数获得

  • C_inv \((\mathbf{C}^\sigma)^{-1}_{p \mu}\), dim: \((\sigma, p, \mu)\)

[91]:
nd_C = NumericDiff(gradn, lambda gradh: gradh.C).derivative.swapaxes(0, 1)
nd_C.shape
[91]:
(2, 12, 15, 15)
[92]:
C_inv = np.array([np.linalg.inv(C[0]), np.linalg.inv(C[1])])
C_inv.shape
[92]:
(2, 15, 15)

利用 \(\partial_\mathbb{A} C_{\mu p}^\sigma = C_{\mu m}^\sigma U_{mp}^{\mathbb{A}, \sigma}\),我们能得到数值 U 矩阵

  • nd_U \(U_{mp}^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, m, p)\),通过数值导数获得

[93]:
nd_U = np.einsum("xmu, xAup -> xAmp", C_inv, nd_C)

我们能用数值 U 矩阵立即验证下述公式:

\[U_{pq}^{\mathbb{A}, \sigma} + U_{qp}^{\mathbb{A}, \sigma} + S_{pq}^{\mathbb{A}, \sigma} = 0\]
[94]:
plot_diff(nd_U + nd_U.swapaxes(-1, -2), - S_1_mo)

1.5.2. B 矩阵

  • B_1 \(B_{pq}^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, p, q)\)

\[B_{pq}^{\mathbb{A}, \sigma} = F_{pq}^{\mathbb{A}, \sigma} - S_{pq}^{\mathbb{A}, \sigma} \varepsilon_q^\sigma - \frac{1}{2} \mathtt{Ax}_{pq}^\sigma [S_{ij}^{\sigma'}]\]
[95]:
B_1 = gradh.B_1
B_1.shape
[95]:
(2, 12, 15, 15)
[96]:
F_1_mo = gradh.F_1_mo
B_1_ = (
    + F_1_mo
    - np.einsum("xApq, xq -> xApq", S_1_mo, e)
    - 0.5 * np.array(Ax0_Core(sa, sa, so, so)((S_1_mo[0, :, so[0], so[0]], S_1_mo[1, :, so[1], so[1]])))
)
[97]:
np.allclose(B_1_, B_1)
[97]:
True

1.5.3. CP-HF 方程验证

\[- (\varepsilon_a^\sigma - \varepsilon_i^\sigma) U_{ai}^{\mathbb{A}, \sigma} - \mathtt{Ax}_{ai}^\sigma [U_{bj}^{\mathbb{A}, \sigma'}] = B_{ai}^{\mathbb{A}, \sigma}\]
[98]:
plot_diff(
    - (ev[0][:, None] - eo[0][None, :]) * nd_U[0][:, sv[0], so[0]]
    - Ax0_Core(sv, so, sv, so)((nd_U[0][:, sv[0], so[0]], nd_U[1][:, sv[1], so[1]]))[0]
    ,
    B_1[0][:, sv[0], so[0]]
)

上述等式还可以将 \(a, i\) 拓展到 \(p \neq q\) 的情形。

1.5.4. CP-HF 方程求解

在 PySCF 中,求解 Unrestricted CP-HF 方程需要使用的是 scf.ucphf 模块。为了讨论问题方便,即使是求取 U 矩阵,我们仍然不会使用到 solve_withs1 函数,而实际使用的是 solve_nos1 函数。当然,在 PySCF 中,两个函数都会被打包在 solve 函数中。

与 Restricted 情形完全不同的是,ucphf.solve 在计算过程中的传参方式与 cphf.solve 完全不同,尽管两个函数有非常类似的参数签名 (signature)。因此,我们传入的第一个参数不可以再像 Restricted CP-HF 一样使用 Ax0_Core(sv, so, sv, so),而必须要额外定义一个函数 fx。传参过程中,U 矩阵会转化为维度 \((\mathbb{A}, n_\mathrm{vir}^\alpha n_\mathrm{occ}^\alpha + n_\mathrm{vir}^\beta n_\mathrm{occ}^\beta)\) 的中间矩阵;这些中间矩阵在下述函数中为 Xresult 所指代。

[99]:
def fx(X):
    prop_dim = X.shape[0]
    X_alpha = X[:, :nocc[0] * nvir[0]].reshape((prop_dim, nvir[0], nocc[0]))
    X_beta = X[:, nocc[0] * nvir[0]:].reshape((prop_dim, nvir[1], nocc[1]))
    Ax = Ax0_Core(sv, so, sv, so, in_cphf=True)((X_alpha, X_beta))
    result = np.concatenate([Ax[0].reshape(prop_dim, -1), Ax[1].reshape(prop_dim, -1)], axis=1)
    return result
  • U_1_vo_ \(U_{ai}^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, a, i)\), type: Tuple[np.ndarray]

[100]:
U_1_vo_ = ucphf.solve(fx, e, mo_occ, (B_1[0, :, sv[0], so[0]], B_1[1, :, sv[1], so[1]]), max_cycle=100, tol=1e-10)[0]
[101]:
plot_diff(U_1_vo_[0], nd_U[0][:, sv[0], so[0]])
[102]:
plot_diff(U_1_vo_[1], nd_U[1][:, sv[1], so[1]])

1.5.5. 完整未“旋转”的 U 矩阵

  • U_1_ \(U_{pq}^{\mathbb{A}, \sigma}\), dim: \((\sigma, \mathbb{A}, p, q)\)

[103]:
U_1_ = np.zeros((2, natm * 3, nmo, nmo))
U_1_[0, :, sv[0], so[0]] = U_1_vo_[0]
U_1_[1, :, sv[1], so[1]] = U_1_vo_[1]
\[U_{ia}^{\mathbb{A}, \sigma} = - S_{ia}^{\mathbb{A}, \sigma} - U_{ai}^{\mathbb{A}, \sigma}\]
[104]:
U_1_[0, :, so[0], sv[0]] = - S_1_mo[0, :, so[0], sv[0]] - U_1_vo_[0].swapaxes(-1, -2)
U_1_[1, :, so[1], sv[1]] = - S_1_mo[1, :, so[1], sv[1]] - U_1_vo_[1].swapaxes(-1, -2)
\[U_{ij}^{\mathbb{A}, \sigma} = - \frac{\mathtt{A}_{ij}^\sigma [U_{ck}^{\mathbb{A}, \sigma'}] + B_{ij}^{\mathbb{A}, \sigma}}{\varepsilon_i^\sigma - \varepsilon_j^\sigma} \quad i \neq j\]

相同的公式可以用于非占-非占的情形。

[105]:
Ax_oo = Ax0_Core(so, so, sv, so)(U_1_vo_)
Ax_vv = Ax0_Core(sv, sv, sv, so)(U_1_vo_)
[106]:
U_1_[0, :, so[0], so[0]] = - (Ax_oo[0] + B_1[0, :, so[0], so[0]]) / (eo[0][:, None] - eo[0][None, :])
U_1_[1, :, so[1], so[1]] = - (Ax_oo[1] + B_1[1, :, so[1], so[1]]) / (eo[1][:, None] - eo[1][None, :])
U_1_[0, :, sv[0], sv[0]] = - (Ax_vv[0] + B_1[0, :, sv[0], sv[0]]) / (ev[0][:, None] - ev[0][None, :])
U_1_[1, :, sv[1], sv[1]] = - (Ax_vv[1] + B_1[1, :, sv[1], sv[1]]) / (ev[1][:, None] - ev[1][None, :])
\[U_{pp}^{\mathbb{A}, \sigma} = - \frac{1}{2} S_{pp}^{\mathbb{A}, \sigma}\]
[107]:
for p in range(nmo):
    U_1_[:, :, p, p] = - S_1_mo[:, :, p, p] / 2
[108]:
plot_diff(U_1_, nd_U)